Reorientation of the Methyl Group in MAs(III) is the Rate-Limiting Step in the ArsM As(III) S-Adenosylmethionine Methyltransferase Reaction

نویسندگان

  • Charles Packianathan
  • Jiaojiao Li
  • Palani Kandavelu
  • Banumathi Sankaran
  • Barry P. Rosen
چکیده

The most common biotransformation of trivalent inorganic arsenic (As(III)) is methylation to mono-, di-, and trimethylated species. Methylation is catalyzed by As(III) S-adenosylmethionine (SAM) methyltransferase (termed ArsM in microbes and AS3MT in animals). Methylarsenite (MAs(III)) is both the product of the first methylation step and the substrate of the second methylation step. When the rate of the overall methylation reaction was determined with As(III) as the substrate, the first methylation step was rapid, whereas the second methylation step was slow. In contrast, when MAs(III) was used as the substrate, the rate of methylation was as fast as the first methylation step when As(III) was used as the substrate. These results indicate that there is a slow conformational change between the first and second methylation steps. The structure of CmArsM from the thermophilic alga Cyanidioschyzon merolae sp. 5508 was determined with bound MAs(III) at 2.27 Å resolution. The methyl group is facing the solvent, as would be expected when MAs(III) is bound as the substrate rather than facing the SAM-binding site, as would be expected for MAs(III) as a product. We propose that the rate-limiting step in arsenic methylation is slow reorientation of the methyl group from the SAM-binding site to the solvent, which is linked to the conformation of the side chain of a conserved residue Tyr70.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volatilization of Arsenic from Polluted Soil by Pseudomonas putida Engineered for Expression of the arsM Arsenic(III) S-Adenosine Methyltransferase Gene

Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically...

متن کامل

Arsenic methylation and volatilization by arsenite S-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159.

Inorganic arsenic (As) is highly toxic and ubiquitous in the environment. Inorganic As can be transformed by microbial methylation, which constitutes an important part of the As biogeochemical cycle. In this study, we investigated As biotransformation by Pseudomonas alcaligenes NBRC14159. P. alcaligenes was able to methylate arsenite [As(III)] rapidly to dimethylarsenate and small amounts of tr...

متن کامل

Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis.

Arsenic-contaminated water is a serious hazard for human health. Plankton plays a critical role in the fate and toxicity of arsenic in water by accumulation and biotransformation. Spirulina platensis (S. platensis), a typical plankton, is often used as a supplement or feed for pharmacy and aquiculture, and may introduce arsenic into the food chain, resulting in a risk to human health. However, ...

متن کامل

Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase.

In this article, a mechanism of arsenite [As(III)]resistance through methylation and subsequent volatization is described. Heterologous expression of arsM from Rhodopseudomonas palustris was shown to confer As(III) resistance to an arsenic-sensitive strain of Escherichia coli. ArsM catalyzes the formation of a number of methylated intermediates from As(III), with trimethylarsine as the end prod...

متن کامل

Pre-steady state kinetics of bacteriophage T4 dam DNA-[N(6)-adenine] methyltransferase: interaction with native (GATC) or modified sites.

The DNA methyltransferase of bacteriophage T4 (T4 Dam MTase) recognizes the palindromic sequence GATC, and catalyzes transfer of the methyl group from S:-adenosyl-L-methionine (AdoMet) to the N(6)-position of adenine [generating N(6)-methyladenine and S:-adenosyl-L-homocysteine (AdoHcy)]. Pre-steady state kinetic analysis revealed that the methylation rate constant k(meth) for unmethylated and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2018